3.274 \(\int \frac {(B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^2(c+d x)}{(a+a \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=117 \[ -\frac {2 (11 B-C) \sin (c+d x)}{15 d \left (a^3 \cos (c+d x)+a^3\right )}+\frac {B \tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac {(7 B-2 C) \sin (c+d x)}{15 a d (a \cos (c+d x)+a)^2}-\frac {(B-C) \sin (c+d x)}{5 d (a \cos (c+d x)+a)^3} \]

[Out]

B*arctanh(sin(d*x+c))/a^3/d-1/5*(B-C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^3-1/15*(7*B-2*C)*sin(d*x+c)/a/d/(a+a*cos(d
*x+c))^2-2/15*(11*B-C)*sin(d*x+c)/d/(a^3+a^3*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {3029, 2978, 12, 3770} \[ -\frac {2 (11 B-C) \sin (c+d x)}{15 d \left (a^3 \cos (c+d x)+a^3\right )}+\frac {B \tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac {(7 B-2 C) \sin (c+d x)}{15 a d (a \cos (c+d x)+a)^2}-\frac {(B-C) \sin (c+d x)}{5 d (a \cos (c+d x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/(a + a*Cos[c + d*x])^3,x]

[Out]

(B*ArcTanh[Sin[c + d*x]])/(a^3*d) - ((B - C)*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) - ((7*B - 2*C)*Sin[c +
 d*x])/(15*a*d*(a + a*Cos[c + d*x])^2) - (2*(11*B - C)*Sin[c + d*x])/(15*d*(a^3 + a^3*Cos[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{(a+a \cos (c+d x))^3} \, dx &=\int \frac {(B+C \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx\\ &=-\frac {(B-C) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\int \frac {(5 a B-2 a (B-C) \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx}{5 a^2}\\ &=-\frac {(B-C) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {(7 B-2 C) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {\int \frac {\left (15 a^2 B-a^2 (7 B-2 C) \cos (c+d x)\right ) \sec (c+d x)}{a+a \cos (c+d x)} \, dx}{15 a^4}\\ &=-\frac {(B-C) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {(7 B-2 C) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {2 (11 B-C) \sin (c+d x)}{15 d \left (a^3+a^3 \cos (c+d x)\right )}+\frac {\int 15 a^3 B \sec (c+d x) \, dx}{15 a^6}\\ &=-\frac {(B-C) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {(7 B-2 C) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {2 (11 B-C) \sin (c+d x)}{15 d \left (a^3+a^3 \cos (c+d x)\right )}+\frac {B \int \sec (c+d x) \, dx}{a^3}\\ &=\frac {B \tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac {(B-C) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {(7 B-2 C) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {2 (11 B-C) \sin (c+d x)}{15 d \left (a^3+a^3 \cos (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.92, size = 197, normalized size = 1.68 \[ \frac {\sec \left (\frac {c}{2}\right ) \cos \left (\frac {1}{2} (c+d x)\right ) \left (75 B \sin \left (c+\frac {d x}{2}\right )-95 B \sin \left (c+\frac {3 d x}{2}\right )+15 B \sin \left (2 c+\frac {3 d x}{2}\right )-22 B \sin \left (2 c+\frac {5 d x}{2}\right )-5 (29 B-4 C) \sin \left (\frac {d x}{2}\right )+10 C \sin \left (c+\frac {3 d x}{2}\right )+2 C \sin \left (2 c+\frac {5 d x}{2}\right )\right )-240 B \cos ^6\left (\frac {1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )\right )}{30 a^3 d (\cos (c+d x)+1)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/(a + a*Cos[c + d*x])^3,x]

[Out]

(-240*B*Cos[(c + d*x)/2]^6*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]
]) + Cos[(c + d*x)/2]*Sec[c/2]*(-5*(29*B - 4*C)*Sin[(d*x)/2] + 75*B*Sin[c + (d*x)/2] - 95*B*Sin[c + (3*d*x)/2]
 + 10*C*Sin[c + (3*d*x)/2] + 15*B*Sin[2*c + (3*d*x)/2] - 22*B*Sin[2*c + (5*d*x)/2] + 2*C*Sin[2*c + (5*d*x)/2])
)/(30*a^3*d*(1 + Cos[c + d*x])^3)

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 185, normalized size = 1.58 \[ \frac {15 \, {\left (B \cos \left (d x + c\right )^{3} + 3 \, B \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + B\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (B \cos \left (d x + c\right )^{3} + 3 \, B \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + B\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (2 \, {\left (11 \, B - C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (17 \, B - 2 \, C\right )} \cos \left (d x + c\right ) + 32 \, B - 7 \, C\right )} \sin \left (d x + c\right )}{30 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+a*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

1/30*(15*(B*cos(d*x + c)^3 + 3*B*cos(d*x + c)^2 + 3*B*cos(d*x + c) + B)*log(sin(d*x + c) + 1) - 15*(B*cos(d*x
+ c)^3 + 3*B*cos(d*x + c)^2 + 3*B*cos(d*x + c) + B)*log(-sin(d*x + c) + 1) - 2*(2*(11*B - C)*cos(d*x + c)^2 +
3*(17*B - 2*C)*cos(d*x + c) + 32*B - 7*C)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3
*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

giac [A]  time = 2.09, size = 148, normalized size = 1.26 \[ \frac {\frac {60 \, B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {60 \, B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} - \frac {3 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 20 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 10 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 105 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 15 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{15}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+a*cos(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(60*B*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - 60*B*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3 - (3*B*a^12*ta
n(1/2*d*x + 1/2*c)^5 - 3*C*a^12*tan(1/2*d*x + 1/2*c)^5 + 20*B*a^12*tan(1/2*d*x + 1/2*c)^3 - 10*C*a^12*tan(1/2*
d*x + 1/2*c)^3 + 105*B*a^12*tan(1/2*d*x + 1/2*c) - 15*C*a^12*tan(1/2*d*x + 1/2*c))/a^15)/d

________________________________________________________________________________________

maple [A]  time = 0.23, size = 159, normalized size = 1.36 \[ \frac {C \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}+\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d \,a^{3}}-\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d \,a^{3}}-\frac {7 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}-\frac {B \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \,a^{3}}+\frac {C \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d \,a^{3}}-\frac {B \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}}+\frac {C \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+a*cos(d*x+c))^3,x)

[Out]

1/4/d/a^3*C*tan(1/2*d*x+1/2*c)+1/d/a^3*B*ln(tan(1/2*d*x+1/2*c)+1)-1/d/a^3*B*ln(tan(1/2*d*x+1/2*c)-1)-7/4/d/a^3
*B*tan(1/2*d*x+1/2*c)-1/3/d/a^3*B*tan(1/2*d*x+1/2*c)^3+1/6/d/a^3*C*tan(1/2*d*x+1/2*c)^3-1/20/d/a^3*B*tan(1/2*d
*x+1/2*c)^5+1/20/d/a^3*C*tan(1/2*d*x+1/2*c)^5

________________________________________________________________________________________

maxima [A]  time = 0.70, size = 187, normalized size = 1.60 \[ -\frac {B {\left (\frac {\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{3}} + \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{3}}\right )} - \frac {C {\left (\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(a+a*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/60*(B*((105*sin(d*x + c)/(cos(d*x + c) + 1) + 20*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5)/a^3 - 60*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^3 + 60*log(sin(d*x + c)/(cos(d*x + c) +
 1) - 1)/a^3) - C*(15*sin(d*x + c)/(cos(d*x + c) + 1) + 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c
)^5/(cos(d*x + c) + 1)^5)/a^3)/d

________________________________________________________________________________________

mupad [B]  time = 1.11, size = 130, normalized size = 1.11 \[ \frac {2\,B\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {B-C}{4\,a^3}+\frac {3\,B+C}{4\,a^3}+\frac {3\,B-C}{4\,a^3}\right )}{d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (B-C\right )}{20\,a^3\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (\frac {B-C}{12\,a^3}+\frac {3\,B-C}{12\,a^3}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a*cos(c + d*x))^3),x)

[Out]

(2*B*atanh(tan(c/2 + (d*x)/2)))/(a^3*d) - (tan(c/2 + (d*x)/2)*((B - C)/(4*a^3) + (3*B + C)/(4*a^3) + (3*B - C)
/(4*a^3)))/d - (tan(c/2 + (d*x)/2)^5*(B - C))/(20*a^3*d) - (tan(c/2 + (d*x)/2)^3*((B - C)/(12*a^3) + (3*B - C)
/(12*a^3)))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {B \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos {\left (c + d x \right )} + 1}\, dx + \int \frac {C \cos ^{2}{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**2/(a+a*cos(d*x+c))**3,x)

[Out]

(Integral(B*cos(c + d*x)*sec(c + d*x)**2/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1), x) + Inte
gral(C*cos(c + d*x)**2*sec(c + d*x)**2/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1), x))/a**3

________________________________________________________________________________________